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Abstract. We study the spin ladder model with interactions between spins on neighboring rungs. The
model Hamiltonian with the exact singlet ground state degenerated with ferromagnetic state is obtained.
The singlet ground state wave function has a special recurrent form and depends on two parameters. Spin
correlations in the singlet ground state show double-spiral structure with period of spirals equals to the
system size. For special values of parameters they have exponential decay. The spectrum of the model
is gapless and there are asymptotically degenerated excited states for special values of parameters in the
thermodynamic limit.

PACS. 75.10.Jm Quantized spin models

1 Introduction

There has been growing interest lately in quantum spin
systems with frustrated interactions [1]. Of special impor-
tance are models for which it is possible to construct an
exact ground state. The first example of such a model
is the well-known Majumdar-Ghosh model [2] which is
the s = 1/2 chain with antiferromagnetic interactions
J1 and J2 of nearest neighbor and next-nearest neighbor
spins, where J2 = J1/2. Afterwards, a large class of 1D
models with exact ground state has been found and
studied [3–10].

A considerable progress has been achieved in a con-
struction of such models by using so-called matrix-product
(MP) form of the ground state wave function [11,12]. One
of the example of the MP state is the ground state of the
Affleck–Kennedy–Lieb–Tasaki (AKLT) model [3], which is
the generic model of the Haldane phase of S = 1 chain.
However, the MP wave functions have typically short-
ranged correlations and, as a rule, describe systems with
the gapped spectrum.

In [13,14] we have studied the model with exact singlet
ground state degenerate with ferromagnetic state. This
model has two different nearest neighbor and next-nearest
neighbor interactions depending on the parameter ν and
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is described by the Hamiltonian

H = −
M∑
i=1

(
S2i−1 · S2i −

1
4

)
− (ν − 1)

M∑
i=1

(
S2i · S2i+1 −

1
4

)
+
ν − 1

2ν

N∑
i=1

(
Si · Si+2 −

1
4

)
(1)

with periodic boundary conditions and even N = 2M .
In fact, this Hamiltonian describe the line of transition

points from the ferromagnetic to the singlet state of the
model

H = −
M∑
i=1

(
S2i−1S2i −

1
4

)
+ J23

M∑
i=1

(
S2iS2i+1 −

1
4

)
+ J13

N∑
i=1

(
SiSi+2 −

1
4

)
.

(2)

The ground state of (2) is ferromagnetic (singlet) at δ < 0
(δ > 0), where δ = J13 + J23

2(1−J23) . When δ = 0, the
model (2) reduces to the Hamiltonian (1).

It has been proved in [13,14] that singlet ground state
of (1) has zero energy at ν > 0 as well as the ferromag-
netic state, while all other states have the positive ener-
gies. It has also been shown that singlet ground state has
double-spiral ordering (excluding some special values of
parameter ν).
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In [13] we have also considered the second model which
is equivalent to special case of the spin-1

2 ladder. This
model depends on one parameter, has the non-degenerate
singlet ground state and its ground state properties are
similar to that of AKLT model.

The exact singlet ground state wave function of these
models has a special recurrent form:

Ψ0(M) = P0ΨM , (3)

ΨM =

(s+
1 + ν1s

+
2 + ν2s

+
3 ...+ ν2s

+
N )(s+

3 + ν1s
+
4 ...+ ν2s

+
N )...

× (s+
2n−1 + ν1s

+
2n...+ ν2s

+
N )...(s+

N−1 + ν1s
+
N ) |↓↓ ... ↓〉

(4)

where s+
i is the s = 1

2 raising operator. Equation (4) con-
tains M = N

2 operator multipliers and the vacuum state
|↓↓ ... ↓〉 is the state with all spins pointing down. The
function ΨM is the eigenfunction of Sz with Sz = 0 but it
is not the eigenfunction of S2. P0 is a projector onto the
singlet state.

The models in [13] correspond to two particular cases
of this wave function: ν1 = ν2 = ν for the first model (1),
and ν1 + ν2 + 1 = 0 for the second model.

In this paper we consider the general case of the wave
function (3) which allows us to construct new Hamiltonian
depending on two parameters ν1 and ν2 and having the
degenerate singlet and ferromagnetic states. The singlet
ground state of this Hamiltonian has double-spiral struc-
ture with period of spirals equals to the system size, but
for special values of the parameters (which include the
second model in [13]) the singlet ground state correlations
have antiferromagnetic character with an exponential de-
cay and the singlet wave function in these cases reduces
to the MP form. The interesting feature of the model is
the existence of the excited states which are asymptoti-
cally degenerated with the ground state for special values
of parameters in the thermodynamic limit.

The paper is organized as follows. In the Section 2 we
will consider the construction of the Hamiltonian with the
exact singlet ground state and will calculate spin correla-
tion functions. In the Section 3 the Hamiltonian at special
values of the parameters is considered. In the Section 4 the
numerical results for the energy spectrum of the model are
presented and Section 5 gives a brief summary.

2 The model

Now we will construct the Hamiltonian for which Ψ0(M) is
the exact ground state wave function. This Hamiltonian
describes two-leg s = 1

2 ladder with periodic boundary
conditions (Fig. 1) and can be represented in a form

H =
M∑
i=1

hi,i+1, (5)

1

2 4 6 8

3 5 7

Fig. 1. The two-leg spin ladder.

where hi,i+1 describes the interaction between neighboring
rungs. The spin space of two neighboring rungs consists of
six multiplets: two singlet, three triplet and one quintet.
At the same time, one can check that for open chain the
wave function ΨM contains only three of the six multiplets
of each pair of neighboring rungs: one singlet, one triplet
and one quintet. The specific form of the singlet and triplet
components present in the wave function (4) depends on
parameters ν1 and ν2. The Hamiltonian hi,i+1 can be writ-
ten as the sum of the projectors onto the three missing
multiplets with arbitrary positive coefficients λ1, λ2, λ3:

hi,i+1 =
3∑
k=1

λkP
i,i+1
k , (6)

where P i,i+1
k is the projector onto the missing multiplets in

the corresponding cell Hamiltonian. Actually, the Hamil-
tonian hi,i+1 contains also offdiagonal projectors between
two missing triplets, but we use this freedom in advance to
make exchange integrals on two legs of ladder and on each
rung respectively equal, that is J12 = J34 and J13 = J24.

The wave function (4) is an exact wave function of the
ground state of the Hamiltonian hi,i+1 with zero energy,
because

hi,i+1|ΨM〉 = 0, i = 1, ...M − 1 (7)

and λ1, λ2, λ3 are the excitation energies of the corre-
sponding multiplets.

So, ΨM is the exact ground state wave function with
zero energy for the total Hamiltonian of an open ladder

Hop =
M−1∑
i=1

hi,i+1 (8)

Hop|ΨM 〉 = 0. (9)

Since the function ΨM contains components with all pos-
sible values of total spin S (0 ≤ S ≤M), then the ground
state of open ladder is multiple degenerate. But it can be
proved by the same way as it was made in [13,14] that
for a cyclic ladder (5) only singlet and ferromagnetic com-
ponents of ΨM have zero energy. Therefore, for a cyclic
ladder (5) Ψ0(M) is a singlet ground state wave function
degenerated with ferromagnetic state. Besides, the follow-
ing general statements are valid for the model (5):

1) the ground states of open ladder described by (8) in
the sector with fixed total spin S are non-degenerate
and their energies are zero;



D.V. Dmitriev et al.: Exactly solvable spin ladder model 93

2) for cyclic ladder the ground state in the S = 0 sector
is non-degenerate. The ground state energies for 0 <
S < M are positive;

3) the singlet ground state wave functions for open and
cyclic ladders coincide with each other.

Since the specific form of the existing and missing mul-
tiplets in the wave function (4) on each two nearest neigh-
bor spin pairs depends on the parameters ν1 and ν2, the
projectors in (6) also depend on ν1 and ν2. Each projector
can be written in the form

P 1,2
k = J

(k)
12 (S1 · S2 + S3 · S4) + J

(k)
13 (S1 · S3 + S2 · S4)

+ J
(k)
14 S1 · S4 + J

(k)
23 S2 · S3 + J

(k)
1 (S1 · S2)(S3 · S4)

+ J
(k)
2 (S1 · S3)(S2 · S4) + J

(k)
3 (S1 · S4)(S2 · S3)

+ C(k)

and this representation is unique for a fixed value of the
parameters ν1 and ν2.

Substituting the above expressions for the projectors
into equation (6), we obtain the general form of the Hamil-
tonians hi,i+1. Inasmuch as the Hamiltonians hi,i+1 have
exactly the same form for any i, it suffices here to give the
expression for h1,2:

h1,2 = J12(A12 +A34)
+ J13(A13 +A24) + J14A14 + J23A23

+ J1A12A34 + J2A13A24 + J3A14A23 (10)

where

Aij = Si · Sj −
1
4

and all exchange integrals depend on the model pa-
rameters and the spectrum of excited states Ji =
Ji(ν1, ν2, λ1, λ2, λ3) as follows:

J12 = −λ2

2
+
λ3

2
(ν1 − 1)2 − ν2

2

(ν1 − 1)2 + ν2
2

J13 = −λ2

2
− λ3

2
(ν1 − 1)2 − ν2

2

(ν1 − 1)2 + ν2
2

J14 = −λ2

2
− λ3

2
(ν2 − ν1 + 1)2

(ν1 − 1)2 + ν2
2

J23 = −λ2

2
− λ3

2
(ν2 + ν1 − 1)2

(ν1 − 1)2 + ν2
2

J1 = 2J12 − λ1
(2ν1 − ν2ν1 − ν2)(ν2ν1 + ν2 − 1− ν2

1)
Z

J2 = 2J13 − λ1
(ν1 − 1)2(ν2ν1 + ν2 − 1− ν2

1)
Z

J3 = J14 + J23 − λ1
(ν1 − 1)2(2ν1 − ν2ν1 − ν2)

Z
(11)

where

Z =
3
4

(ν1 − 1)4 +
1
4

(ν1 + 1)2(2ν2 − ν1 − 1)2

(one should keep in mind that only positive λi can be
substituted to these expressions).

In general, the Hamiltonian hi,i+1 contains all the
terms presented in (10), but we can simplify it by set-
ting, for example, J2 = J3 = 0 and solving equations (11)
for λ1, λ2, λ3. All λi turn out to be positive in this case
for any ν1 and ν2 except two lines: ν1 = 1 and ν2 = ν1 +1,
where ground state is multiple degenerated. The Hamil-
tonian hi,i+1 in this case takes the form

h1,2 = J12(A12 +A34) + J13(A13 +A24)
+ J14A14 + J23A23 + J1A12A34 (12)

J12 =
ν1ν2 + ν2 − 2ν1 − ν2

2

2

J13 =
ν1ν2 + ν2 − ν2

1 − 1
2

J14 = ν1 − ν2 J23 = ν1(1− ν2)

J1 = 4
ν1(1− ν2)(ν1 − ν2)

(1− ν1)2
·

The calculation of the norm of (3) and the singlet ground
state correlation functions can be performed in complete
analogy to the corresponding calculations for the case ν1 =
ν2 [13,14]. So, a norm of Ψ0(M) can be written in a form

GM = 〈Ψ0(M)Ψ0(M)〉 =
1
2

∫ 1

−1

ΦM (y)dy, (13)

where ΦM (y) is expanded over Legendre polynomials
Pn(y)

ΦM (y) =
M∑
n=0

cn(M)Pn(y). (14)

The coefficients cn(l) are defined by the recurrent equation

cn(l + 1) =
n

2n− 1
[ν2(n− 1) + ν1 + 1]2

2
cn−1(l)

+
ν2

2(n2 + n) + (ν1 − 1)2

2
cn(l)

+
n+ 1
2n+ 3

[ν2(n+ 2)− ν1 − 1]2

2
cn+1(l) (15)

with initial condition c0(0) = 1 and cn(l) = 0 at n > l.
The appropriate calculations result in the expression

for spin correlation functions at N →∞

〈S1S2l+1〉 = 〈S2S2l+2〉 =
1
4

cos
(

4πl
N

)
(16)

〈S1S2l+2〉 =
1
4

cos
(

4πl
N

+4ϕ
)
. (17)

These equations mean that the spiral on each leg with
pitch angle 4π

N is formed and the shift angle between spi-
rals on the upper and the lower legs is 4ϕ = 4π

N
ν1−1
ν2

. So,
there is just one full rotation of the spin over the length
of the ladder, independent of the size of the system and
for fixed l � N at N → ∞ two spins on the ladder are
parallel.
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Fig. 2. (ν1, ν2) plane. Thick lines are special cases of the
model. Each value of n corresponds to a pair of equivalent
lines. Due to the symmetry (21) it is sufficient to consider only
the shaded area of (ν1, ν2) plane.

3 Special cases

There are special values of the parameters ν1 and ν2 for
which equations (16, 17) are not valid. These values can
be determined from equation (15), when the coefficients
of cn−1(l) or cn+1(l) equal to zero. These conditions lead
to following equations

ν2(n− 1) + ν1 + 1 = 0 (18)
−ν2(n+ 1) + ν1 + 1 = 0. (19)

The special lines (18) and (19) on the (ν1, ν2) plane are
shown in Figure 2. At ν1 = ν2 equations (18, 19) give
special points of the model (1) [13,14].

We note that there is a symmetry transformation

ν1 →
ν2 − 1
ν2 − ν1

ν2 →
ν2

ν2 − ν1
(20)

which maps lines (18) and (19) onto each other and, there-
fore, there is pair of equivalent lines for each value of n.
The transformation (20) does not change the wave func-
tion (3) as well as the Hamiltonian (12) apart from a
change in energy scale by a factor (ν2 − ν1)2. So, it is suf-
ficient to consider the region on (ν1, ν2) plane restricted
by the inequality |ν2 − ν1| ≤ 1 (see Fig. 2).

For ν1 and ν2 defined by equations (18) or (19) ΦM (y)
contains only n terms and the wave function ΨM contains
only n multiplets rather than (M+1) as it does in generic
case. It can be shown [13] that wave function Ψ0(M) for
these special cases can be written in MP form:

Ψ0(M) = Tr (D1,2 D3,4 . . . DN−1,N) , (21)

where D = T + uS is the n × n matrix describing states
of corresponding spin pair. Singlet state matrix is

S = I |s〉 (22)

Fig. 3. Stripe spin structure on the ladder model.

where I is identity matrix and |s〉 is the singlet state.
Triplet state matrix T is expressed by Clebsch-Gordan
coefficients Cm1,m2 = 〈(1,m1) (j,m2) | (j,m1 +m2)〉 as
follows:

T =
1
C0,j


C0,j |0〉 C1,j−1 |1〉 0 0 0

C−1,j |−1〉 C0,j−1 |0〉 . 0 0
0 . . . 0
0 0 . . C1,−j |1〉
0 0 0 C−1,−j+1 |−1〉 C0,−j |0〉

,
(23)

where j = n−1
2 and |σ〉 is the triplet state with Sz = σ.

The parameter u is defined by expression

u =
ν1 − 1

ν2 (n− 1)
· (24)

Exact calculation of the correlators in these cases using
standard transfer matrix technique results in

〈S1S2〉 =
1
4
− u2

ω1

〈SiSi+2l〉 = (1 + 2z)
u2 − z2

ω2
1

(
ω2

ω1

)l−1

〈S2i+1S2i+2l+2〉 = −(1 + 2z)
(u+ z)2

ω2
1

(
ω2

ω1

)l−1

〈S2i+2S2i+2l+1〉 = −(1 + 2z)
(u− z)2

ω2
1

(
ω2

ω1

)l−1

(25)

where we use notations

z =
1

n− 1
, ω1 = 1 + 2z + u2, ω2 = ω1 − 4z2.

In the particular case of zero singlet weight, u = 0, when
spins on each rung form a local triplet, correlation func-
tions (25) coincide with those obtained in [11,16].

According to equations (25) the singlet ground state
has collinear or stripe spin structure, i.e. spin-spin corre-
lations are ferromagnetic along legs and antiferromagnetic
between them (Fig. 3).

These correlations have an exponential decay for finite
value n and the correlation length rc is

rc = 2 ln−1

∣∣∣∣ω1

ω2

∣∣∣∣ . (26)
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For n→∞ there is a magnetic order m:

〈SiSi+2l〉 = −〈SiSi+1+2l〉 = m2 l →∞,

m =
u

1 + u2
·

When u = ±1 the magnetic order is equal to the classical
value 1/2.

It is interesting to note that rc diverges for finite n
when u → ∞ ((ν1, ν2) → (−1, 0)) but the prefactors
in (25) vanish in this case. As it is shown in Figure 2
this is the point where all special lines are intersected and
the wave function Ψ0(M) is a simple product of the singlet
pairs

Ψ0(M) = (s+
1 − s+

2 ) ... (s+
N−1 − s+

N) |↓↓ ... ↓〉. (27)

We note that the wave function (3) show double-spiral
ordering for all values of ν1 and ν2 excluding the special
lines. The crossover between spiral and strip states occurs
in the exponentially small (at N → ∞) vicinity of the
special lines.

Now we should make the following remark. There is
one particular case ν1 + ν2 + 1 = 0 (n = 2), which was
considered in [13], when on each two neighboring rungs
the wave function ΨM contains only one singlet and one
triplet and does not contain quintet. Therefore, in this
case the cell Hamiltonian can be written in the form [15]

Hi,i+1 =
4∑
k=1

λkP
i,i+1
k , (28)

where P i,i+1
4 - is a projector onto the quintet state.

If λ1, λ2, λ3, λ4 > 0, wave function Ψ0(M) is non-
degenerate singlet ground state wave function for the
Hamiltonian (28). In this case all four-spin interactions
can be excluded by setting J1 = J2 = J3 = 0 and then we
arrive at the Hamiltonian

Hi,i+1 = J12

[
(S2i−1 · S2i −

1
4

) + (S2i+1 · S2i+2 −
1
4

)
]

+ 2J13

[
(S2i−1 · S2i+1 −

1
4

) + (S2i · S2i+2 −
1
4

)
]

+ 2J14(S2i−1 ·S2i+2 −
1
4

) + 2J23(S2i ·S2i+1 −
1
4

)

(29)

and all exchange integrals Jij depend on one model pa-
rameter. The explicit form of Jij was found in [13]. It was
shown that for this model Ψ0(M) is non-degenerate singlet
ground state wave function with exponentially decaying
spin correlations and there is an energy gap.

In other special cases we can also construct Hamilto-
nians for which Ψ0(M) is non-degenerate singlet ground
state wave function. But we have to introduce more dis-
tant interactions. For example, such a model for n = 3
would contain interactions between next-nearest neighbor
spin pairs

H =
M∑
i=1

Hi,i+1,i+2. (30)

For the point (ν1 = 1, ν2 = −1), when spins on each rung
form a local triplet, one of the possible Hamiltonians can
be written as

H1,2,3 = A12 +A23 + 38A13 + 6A2
13

− (A2
12 +A2

23)(A13 +
7
4

)

− (A13 +
7
4

)(A2
12 +A2

23) + 52 (31)

where

Aij = Li · Lj − 1

and Li = s2i−1 + s2i is the S = 1 operator.
The ground state wave function for the Hamilto-

nian (31) has the matrix-product form (21) with

D =

 |0〉 − |1〉 0
|−1〉 0 − |1〉

0 |−1〉 − |0〉

 .

4 Spectrum of the model

Generally, the excitation spectrum of the model (5, 12) can
not be calculated exactly. It is clear that this spectrum is
gapless because, for example, the one-magnon energy is
∼ N−4 at N → ∞. Moreover, the lowest singlet excita-
tion is gapless as well. For the model (5, 12) lying on the
special lines this fact can be established from the follow-
ing consideration. For the simplicity we consider the case
ν1 = ν2 = ν = 1

n . We choose the variational wave function
of the excited singlet state at ν1 = ν2 = ν as

Ψs(ν, δ,M) =
1√

1− c2(δ,M)
× [c(δ,M) Ψ0(ν,M)− Ψ0(ν + δ,M)] ,

where Ψ0(ν,M) and Ψ0(ν + δ,M) are the normalized sin-
glet ground state wave functions of (5) with zero ener-
gies at ν1 = ν2 = ν and ν1 = ν2 = ν + δ (the point
ν1 = ν2 = ν + δ on (ν1, ν2) plane does not belong to
the special line). The functions Ψs(ν, δ,M) and Ψ0(ν,M)
are orthogonal and c(δ,M) is the overlap of Ψ0(ν,M) and
Ψ0(ν + δ,M)

c(δ,M) = 〈Ψ0(ν,M) | Ψ0(ν + δ,M)〉 .

It can be shown that

c2(δ,M) ∼ 1
1 + δ2(M !)2eO(M)

at M →∞. (32)

Equation (32) follows from the fact that
〈Ψ0(ν,M) | Ψ0(ν,M)〉 and c(δ,M) is represented by the
sum of n terms in (14) while 〈Ψ0(ν + δ,M) | Ψ0(ν + δ,M)〉
contains M terms.
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Fig. 4. Dependences of energy of the lowest singlet (circles)
and triplet (triangles) excited states on the system size N at the
points ν1 = ν2 = 1/2 (solid lines) and ν1 = ν2 = 3/4 (dashed
line). The singlet excited state energy for ν1 = ν2 = 3/4 is out
of scale of this figure but has similar dependence on N .

The variational energy calculated with respect to
Ψs(ν, δ,M) is

Es = 〈Ψs(ν, δ,M) | H(ν,M) | Ψs(ν, δ,M)〉

=
1

1− c2(δ,M)
× 〈Ψ0(ν + δ,M) | H(ν,M) | Ψ0(ν + δ,M)〉

∼ 1 + δ2(M !)2

δ2(M !)2

×
〈
Ψ0(ν + δ,M) | (−δdH(ν,M)

dν
) | Ψ0(ν + δ,M)

〉
∼ 1 + δ2(M !)2

δ(M !)2
·

And minimization of Es over the function δ(M) leads to

δ ∼ e−M lnM+O(M) Es ∼ e−M lnM+O(M).

This consideration can be easily extended to the points
ν1 6= ν2 on the special lines. But it is not valid for the
parameters ν1 and ν2 which are out of special lines. We
performed the numerical diagonalization of finite ladders
for various parameters ν1 and ν2. The energies of lowest
singlet and triplet states of (5) are shown in Figure 4 as
a function of N for parameters corresponding to different
types of the ground state. Figure 4 shows that the expo-
nential degeneracy possibly takes place for all parameters
ν1 and ν2, but we can not confirm it strictly.

Thus, on the special lines the ground state of consid-
ered model is asymptotically degenerated at the thermo-
dynamic limit. It is not clear if the degeneracy is expo-
nentially large or not.

So far, we have considered the models with degenerate
singlet and ferromagnetic states. Now we discuss the phase
diagram of the zigzag chain model given by (2). The line of
transition points from the ferromagnetic to singlet state

−1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

J

Singlet

Gapped state

Gapless
state

Ferromagnet

J

23

13

Fig. 5. Phase diagram of the zigzag chain model (2). The
thick solid line is the boundary between the ferromagnetic
and singlet phases. Circles correspond to the special cases of
the model. The thin solid line denotes the heuristic boundary
between gapped and gapless phases. On the dotted line the
ground state is a product of singlet pairs [2, 3][4, 5]....

is described by the one parametric Hamiltonian (1) (or
by (12) at ν1 = ν2).

The exact ground state in the singlet phase (Fig. 5)
is generally unknown. But it is interesting to note that
the ground state on the line J13 = −1/2 is the product
of singlets on ladder diagonals (2,3), (4,5), ... as in the
point J13 = −J23 = −1/2 on the transition line. The
spectrum of (2) on the transition line is gapless. There are
some regions on the plane (J13, J23) which were studied
by different approximation methods.

At J13 = 0 and 0 < J23 < 1 the model (2) reduces
to the alternating Heisenberg chain studied in [17]. The
lowest excitation is the triplet and there is the gap. At
J23 = 0 and J13 > 0 the model (2) reduces to the spin
ladder with antiferromagnetic interactions along legs and
the ferromagnetic interactions on rungs. It is evident that
there is a gap at J13 � 1 (in this case the model is equiv-
alent to the spin S = 1 Heisenberg chain). It was shown
in [18] that the gap exists at J13 � 1. At J23 = −1 and
J13 � 1 the spectrum is gapless according to the results
of [19].

We have calculated the first singlet and triplet excita-
tion at J13 = −1/2 and 1/2 < J23 < 1 by the numerical
diagonalization of the finite ladders. As it can be seen from
Figure 6 the gap is closed on the transition line. So, we
expect that the phase diagram of the model (2) has the
form shown in Figure 5.
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Fig. 6. Dependence of singlet-singlet and singlet-triplet energy
gap on J23 along the line J13 = −1/2 (dotted line in Fig. 5).
Calculation was made for finite chain with N = 20.

5 Summary

We have constructed the spin ladder model with ferro- and
antiferromagnetic interactions between spins on neighbor-
ing rungs. The model has exact singlet ground state de-
generated with ferromagnetic state. The spin correlators
in the singlet ground state show double-spiral ordering
with period of spirals equals to the system size. However,
for special values of the parameters spin correlators in the
singlet state have exponential decay and in these cases the
singlet ground state wave function can be represented in
the MP form. The spectrum of the model is gapless and
there is asymptotic degeneracy of the ground state for spe-
cial values of the parameters at the thermodynamic limit.

The singlet ground state wave function has the recur-
rent form (3) and depends on two parameters. This func-
tion can be further generalized. For example, we can take
Ψ0(M) in a form

Ψ0(M) = P0ΨM

where ΨM is the product of alternating multipliers

ΨM = (s+
1 + ν1s

+
2 + ν2s

+
3 ...)(s

+
3 + ν3s

+
4 + ν4s

+
5 ...)

× (s+
5 + ν1s

+
6 + ν2s

+
7 ...)... |↓↓ ... ↓〉

with the condition

1 + ν1

ν2
=

1 + ν3

ν4
·

The Hamiltonian of the model for which Ψ0(M) is the
singlet ground state has two rungs in the elementary cell.
This Hamiltonian can be taken in the form containing the
interactions between neighboring rungs only and without
four spin terms.
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